- Home
- Standard 11
- Mathematics
$\sin ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ को संतुष्ट करने वाले $\theta \in\left(0, \frac{\pi}{2}\right)$ के सभी मानों का योग है
$\pi $
$\frac{{5\pi }}{4}$
$\frac{{\pi }}{2}$
$\frac{{3\pi }}{8}$
Solution
${\sin ^2}2\theta \, + \,{\cos ^4}2\theta \, = \frac{3}{4}$
Let $\,{\cos ^2}2\theta \, =t $
$ \Rightarrow \,1\, – \,\,{\cos ^2}2\theta \, + \,{\cos ^4}2\theta \, = \frac{3}{4}$
$ \Rightarrow t = \frac{1}{2}\, \Rightarrow \,\,{\cos ^2}2\theta \, = \frac{1}{2}\,$
$ \Rightarrow 2\,{\cos ^2}2\theta – 1 = 0\, \Rightarrow \,\cos 4\theta \, = 0$
$ \Rightarrow \,4\theta \, = (2n + 1)\frac{\pi }{2}$
$ \Rightarrow \,\theta \, = (2n + 1)\frac{\pi }{8} \Rightarrow \theta = \frac{\pi }{8},\frac{{3\pi }}{8} \in \left[ {0,\frac{\pi }{2}} \right]$
Sum of values of $\theta $ is $\frac {\pi }{2}$